
ISRAEL JOURNAL OF MATHEMATICS 157 (2007), 219–238

DOI: 10.1007/s11856-006-0009-z

PAIR CORRELATIONS OF SEQUENCES

IN HIGHER DIMENSIONS

BY

R. Nair

Department of Mathematics, University of Liverpool

Liverpool L69 7ZL, UK

e-mail: nair@liv.ac.uk

AND

M. Pollicott

Mathematics Institute, University of Warwick

Coventry CV4 7AL, UK

e-mail: mpollic@maths.warwick.ac.uk

ABSTRACT

We consider a system of “generalised linear forms” defined on a subset

x = (xij) of Rd by

L1(x)(k) =

d1X
j=1

gk
1j(x1j), . . . , Ll(x)(k) =

dlX
j=1

gk
lj(xlj) ∈ R, for k ≥ 1,

where d = d1 + · · · + dl and for each pair of integers (i, j), 1 ≤ i ≤ l,

1 ≤ j ≤ di the sequence of functions (gk
ij(x))∞

k=1 is differentiable on an

interval Xij . Then let

Xk(x) = ({L1(x)(k)}, . . . , {Ll(x)(k)}) ∈ Tl,

for x in the Cartesian product X = ×l
i=1 ×

di
j=1 Xij ⊂ Rd. Let R =

I1 × · · · × Il be a rectangle in Tl and for each N ≥ 1 let

VN (R) =
X

1≤n6=m≤N

χR(Xn(x) − Xm(x))

and then define

∆N = sup
R⊂Tl

{VN (R) − N(N − 1) leb(R)}

where the supremum is over all rectangles in Tl. We show that for almost

every x ∈ Td we have that

∆N = O(N(log N)α),

for appropriate α. Other related results are also described.
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0. Introduction

Consider a sequence of points y
k

= (y
(1)
k , . . . , y

(l)
k ), k ∈ N, on the l-torus Tl =

[0, 1)l. We say that this sequence is uniformly distributed if for any rectangle

R = I1 × · · · × Il ⊂ Tl we have that

Card{1 ≤ k ≤ N : y
k
∈ R}

N
→ leb(R), as N → +∞,

where leb(·) denotes the usual l-dimensional Lebesgue measure.

Another indication of the regularity of this sequence is if it satisfies the pair

correlation property. The study of pair correlations of eigenvalues is a familiar

tool in mathematical physics and other areas. In recent years, this quantity has

been used to augment the usual uniform distributional description of certain

natural sequences in the unit interval. More precisely, we can ask whether for

each s > 0

(0.1)
Card{1 ≤ n 6= m ≤ N : ||y

n
− y

m
|| ≤ sN−α}

(N − 1)N1−lα
→ Vol(B(0, s)), as N → +∞,

for some fixed α > 0, where || · || is the usual euclidean norm on Rl and

Vol(B(0, s)) is the volume of the ball of radius s (i.e., on average the sN−α

balls around points in the sequence typically contain N(N − 1)/ Vol(N−lα)

other points).

This property has been extensively studied in the particular case l = 1. In

particular, Rudnick and Sarnak considered the sequence xn = {nkx}, n ∈ N,

and showed that for almost every x ∈ [0, 1) property (0.1) holds when α = 1.∗

Rudnick and Zaharescu extended this result to sequences (akx), where ak, k ≥ 1,

is a lacunary sequence. Finally, Berkes, Philipp and Tichy considered analogous

questions for more general sequences ak (cf. [BPT, Proposition 4]).

In this note we shall present an extention of some of these results to higher

dimensions and more general classes of functions. This is formulated in terms

of general families similar to linear forms. More precisely, given a partition

d = d1 + · · · + dl we can naturally relabel the coordinates

x = (x11, . . . , x1d1 , x21, . . . , x2d2 , . . . , xl1, . . . , xldl
) ∈ Rd .

* In fact, Rudnick and Sarnak showed a more precise result where α is diophantine
type.
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We can now consider a system of “generalised linear forms”

L1(x11, . . . , x1d1)(k) =

d1
∑

j=1

gk
1j(x1j),

...

Ll(xl1, . . . , xldl
)(k) =

d1
∑

j=1

gk
lj(xlj),

where for each pair of integers (i, j) with 1 ≤ i ≤ l and 1 ≤ j ≤ di the sequence

of functions (gk
ij(xij))

∞
k=1 is differentiable on the interval Xij . Then let

(0.2) Xk(x) = ({L1(x)(k)}, . . . , {Ll(x)(k)}) ∈ Tl,

where {·} denotes the fractional part, for x in the Cartesian product X.

Example (l = 2, d1 = d2 = 2): For sequences of integers a
(1)
k , . . . , a

(4)
k , k ≥ 1,

and x = (x1, . . . , x4) ∈ R4 we could consider the sequence of points Xk(x) =

({a(1)
k x1 + a

(2)
k x2}, {a(3)

k x3 + a
(4)
k x4}) ∈ T2.

Let R = I1 × · · · × Il be a rectangle in Tl and let us denote for each N ≥ 1,

VN (R) =
∑

1≤n<m≤N

χR(Xn(x) − Xm(x)),

the counting function for pairs whose differences lie in R. We then define a

measure of the discrepancy from the average

∆N = sup
R⊂Tl

{VN (R) − N(N − 1) leb(R)}

where the supremum is over all rectangles in Tl. Clearly, |∆N | ≤ N(N − 1).

Definition: We define a class of differentiable functions (gk(x))∞k=1 defined on

the interval X = [a, b] which we call of Koksma type (K type) if

(i) x 7→ gm′(x) − gn′(x), is monotone on X for m 6= n, and

(ii) |gm′(x) − gn′(x)| ≥ K > 0 for all x in X .

We call K the Koksma constant of the family (gk(x))∞k=1.

Examples: The following are simple examples of functions of K type.

(a) gk(x) = akx for any sequence of distinct integers (ak)∞k=1 defined on T1;

(b) gk(x) = xk (k = 1, 2, . . .), on any finite interval on (1,∞); and

(c) gk(x) = kx (k = 2, 3, . . .), on any finite interval on (1,∞).
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Definition: We say the sequence (Xk(·))∞k=1 defined by (0.2) is of Type 1 if

for each (i, j), 1 ≤ i ≤ k, 1 ≤ j ≤ di the sequence of functions (gk
ij(x))∞k=1 is of

K type on the interval X(i, j) with Koksma constant Ki,j .

Theorem 1: Suppose (Xk(·))∞k=1 is of Type 1 and let ǫ > 0. Then for almost

every x ∈ Rd we have that

∆N = o(N(log N)3+l+ǫ).

In particular, for any α < 1/l, we can choose R(s/N) = [−sN−α, sN−α]l;

then we have the bound

∣

∣

∣

∣

Card{1 ≤ n 6= m ≤ N : ||y
n
− y

m
|| ≤ sN−α} − Vol(B(0, sN−α))

N2−lα

∣

∣

∣

∣

≤ ∆N

N2−lα
→ 0,

as N → +∞. In fact, the result is not necessarily true at this level of generality

with α = 1/l (as we shall see in section 5), but on the other hand our result

holds in considerable generality.

We now examine a special case.

Definition: Consider the increasing sequences of integers (aij(n))∞n=1, for

1 ≤ i ≤ l and 1 ≤ j ≤ di. Suppose also that for distinct pairs (i, j) and

(i′, j′)

(0.3) #{aij(n) : n ≥ 1} ∩ {ai′j′ (n) : n ≥ 1} < ∞.

We associate sequences of linear forms Li(·)(k) : Tdi → R, for i = 1, . . . , l,

defined by

Li(x)(k) = ai1(k)xi1 + · · · + aidi(k)xidi .

We again write Xk = ({L1(x)(k)}, . . . , {Ll(x)(k)}) ∈ Tl. We say that (Xk)∞k=1

is of Type 2 if (0.3) holds.

Example: Consider a positive d × d matrix A > 0 with integer entries. Let

An = (aij(n))d
i,j=1 be the nth power. In particular, each entry aij(n) ∈ Z+ is a

strictly increasing sequence. Given a typical l × d matrix x = (xij)
l
i=1

d

j=1 with

entries in T we associate a sequence Xk(x) = ({L1(x)(k)}, . . . , {Ll(x)(k)}) ∈ Tl,

k ∈ N, by

Li(x)(k) =

d
∑

j=1

aij(k)xij .
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Let D = ld. For almost every x ∈ TD the identity (0.1) holds for the sequence

Xk(x), k ∈ N.

Theorem 2: Suppose (Xk(·))∞k=1 is of Type 2 and let ǫ > 0. Then for almost

every x ∈ Rd we have that

∆N = o(N(log N)1+l+ǫ).

When l = 1, Theorem 2 reduces to a result in [BTP].

In the case d = 1 this can be strengthened under an additional hypothesis.

Suppose instead of being a sequence of distinct integers as in Theorem 2 we

assume that (an)∞n=1 is a sequence of distinct reals such that for some real q > 0

we have |ak − aj | ≥ q for each pair of distinct natural numbers j and k. Then

we say (Xk(·))∞k=1 is of Type 3.

Theorem 3: Suppose (Xk(·))∞k=1 is of Type 3 and let ǫ > 0. Then for almost

every x ∈ R we have that

∆N = o(N(log N)2+ǫ).

When l = 1, Theorem 3 reduces to a result in [BTP] when ak is integer.

It is unknown to the authors if Theorem 3 can be extended to higher dimen-

sions. In section 4 we will present an example which shows Theorems 1, 2 and 3

are, in some sense, near to best possible. Moreover, this example also shows that

property (0.1) established by Rudnick and Sarnak for sequences like an = nk

(n = 1, 2, · · ·) with integer k ≥ 1 does not extend to all strictly increasing

sequences of integers (an)∞n=1.

For each pair (i, j) with 1 ≤ i ≤ k, 1 ≤ j ≤ di let (an
ij)

∞
n=1 be a strictly

increasing sequence of integers. We can let

gij(x)(k) = ak
ij cos(ak

ijx).

Also write

Li(x)(k) =

di
∑

j=1

gij(xij)(k) (1 ≤ i ≤ l)

and let Xk(x) = ({L1(x)(k)}, . . . , {Ll(x)(k)}). Then we say (Xk(·))∞k=1 is of

Type 4. Our final theorem is the following

Theorem 4: Suppose (Xk(·))∞k=1 is of Type 4 and let ǫ > 0. Then for almost

every x we have ∆N (x) = o(N3/2(log N)l+3+ǫ).

Because its formulation is slightly more straightforward we shall prove

Theorem 2 in section 1 before we prove Theorem 1 in section 2. Because of
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its similarity to the proof of Theorem 2, the proof of Theorem 3 is only sketched

in section 1.

1. Proof of Theorem 2

We begin with some standard notation. Let R = I1 × · · · × Il be a rectangle inTl (where I1, . . . , Il ⊂ T are intervals). Given y
1
, . . . , y

N
∈ Tl we can denote

DN = sup
R⊂Td

∣

∣

∣

∣

1

N

N
∑

j=1

χR(yj) − leb(R)

∣

∣

∣

∣

.

We denote e(·) = exp(2πi·) and let 〈., .〉 denote the standard inner product onRl . The following result is standard (cf. [KN, p. 116]). Here and henceforth C,

possibly with subscripts, denotes a positive constant not necessarily the same

at each occurence.

Lemma 1.1 (Erdős–Turan–Koksma–Szüsz inequality): There exists C1 > 0

such that for any L ≥ 1, and y
1
, . . . , y

M
∈ Tl,

MDM ≤ C1

(

M

L
+

∑

0<M(h)≤L

h∈Zl 1

r(h)

∣

∣

∣

∣

∑

1≤i≤M

e(〈h, y
i
〉)

∣

∣

∣

∣

)

where h = (h1, . . . , hl) ∈ Zl and we denote

r(h) =

l
∏

i=1

max(1, |hi|) and M(h) = max
1≤i≤l

|hi|.

We want to apply Lemma 1.1 with the M terms y
j

replaced by N(N − 1)

terms X i(x) − Xj(x) (with 1 ≤ i < j ≤ N) to deduce that

(1.1)

∆N ≤ C1

(

N2

L
+

∑

0<M(h)≤L

h∈Zl 1

r(h)

∣

∣

∣

∣

∑

1≤j 6=k≤N

e(〈h, Xj(x) − Xk(x)〉|
)

≤ C1

(

N2

L
+

∑

0<M(h)≤L

h∈Zl 1

r(h)

(∣

∣

∣

∣

∑

1≤j≤N

e(〈h, Xj(x)〉)
∣

∣

∣

∣

2

+ N

))

,

the last line coming from the trivial identity

N +
∑

1≤j 6=k≤N

e(〈h, Xj(x)〉)e(−〈h, Xk(x)〉) =

∣

∣

∣

∣

∑

1≤j≤N

e(〈h, Xj(x)〉)
∣

∣

∣

∣

2

.
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If we set L = 2K , say, for some K ≥ 1, we can use (1.1) to get the estimate

(1.2)
∫Td

| max
2K−1≤m<2K

∆m|dx

≤ C1

(

2K +
∑

0<M(h)≤2K

h∈Zl 1

r(h)

∫Td

[

max
2K−1≤r<2K

∣

∣

∣

∣

∑

1≤j≤r

e(〈h, Xj(x)〉)
∣

∣

∣

∣

2

dx+2K

])

.

To proceed we need the following estimate.

Lemma 1.2: There exists C2 > 0 such that for any N ≥ 1,

(1.3)

∫Td

(

max
1≤n≤N

∣

∣

∣

∣

∑

1≤j≤n

e(〈h, Xj(x)〉)
∣

∣

∣

∣

2)

dx ≤ C2N,

uniformly in h = (h1, . . . , hl) ∈ Zl

Proof: This follows from a result of Fefferman and Sjölin (cf. [Na1, Cor. 12]),

which is in turn a multidimensional version of the Carleson–Hunt maximal in-

equality [2]. Their theorem states that there exists C3 > 0 such that whenever

f ∈ L2(Td) has a Fourier expansion f(x) =
∑

n∈Zd ane(〈n, x〉) and if we write

n = (n1, . . . , nk) and denote by Sκf(x) =
∑

|n1|,...,|nd|≤κ ane(〈n, x〉) the trunca-

tion to a (2κ + 1)-square, then we have the bound

(1.4)

∫Td

max
κ>0

|Sκf(x)|2dx ≤ C3

∫Td

|f(x)|2dx.

We want to apply (1.4) to the function

f(x) =

N
∑

j=1

e(〈hXj(x)〉) =

N
∑

j=1

e

( k
∑

i=1

hiLi(x)(j)

)

=

N
∑

j=1

e

( k
∑

i=1

di
∑

l=1

hiail(j)xil

)

.

However, because of (0.3), there is little scope for cancellation in the exponential

and so N +O(1) Fourier coefficients are equal to 1 and all of the others are zero.

Applying (1.3) with N = 2K gives a bound on (1.2) of

(1.5)

∫Td

| max
2K−1≤m<2K

∆m|dx ≤ 2K

(

C1 + (C2 + 1)
∑

0<M(h)≤2K

h∈Zl 1

r(h)

)

.

To bound the term on the right hand side of (1.5) we need the following lemma.
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Lemma 1.3: There exists C3 > 0 such that for any L ≥ 2,

∑

0<M(h)≤L

h∈Zl 1

r(h)
≤ C3(log L)l.

Proof: This follows from a combinatorial argument in [Na1]. Alternatively,

this follows directly by bounding the summation by the product of integrals

(

2 + 4

∫ L

1

dx

x

)l

= (2 + 4 logL)l.

Using Lemma 1.3 with L = 2Kto bound the right hand side of (1.5) gives

(1.6)

∫Td

| max
2K−1≤m<2K

∆m|dx ≤ 2K(C1 + (C2 + 1)C3(log 2)lK l) ≤ C42
KK l,

for suitably large C4 > 0. Given ǫ > 0, we define

Eǫ = {x ∈ Td : ∆N (x) > N(log N)k+1+ǫ for infinitely many N}.

We are now in a position to prove the following result.

Lemma 1.4: For any ǫ > 0, the set Eǫ has zero Lebesgue measure.

Proof: If we denote, for each K ≥ 1,

AK = {x ∈ Td : |max2K−1≤m<2K ∆m(x)| > 2KK l+1+ǫ},

then one easily sees Eǫ ⊂
⋂∞

r=1

⋃∞
K=r AK . Using (1.6) we can bound

leb(AK) ≤
∫Td |max2K−1≤m<2K ∆m|dx

2KK l+1+ǫ

≤ C42
KK l

K l+1+ǫ2K
≤ C5K

−(1+ǫ),

for sufficiently large C5 > 0. In particular, we can now observe that

∞
∑

K=1

leb(AK) ≤
∞
∑

K=1

K−(1+ǫ) < +∞.

It follows from the Borel-Cantelli lemma that leb(Eǫ) = 0.

In particular, Theorem 2 now follows from Lemma 1.4 above.

A similar argument can be used to prove Theorem 3. The only additional

ingredient is the estimate given in the following Lemma, taken from [MV] which

both replaces and generalises the role played by the Carleson–Hunt maximal

inequality in the proof of Theorem 2 for d = 1.
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Lemma 1.5: Suppose we are given q > 0, real numbers (an)N
n=1 such that

an+1 − an ≥ q, real numbers T and T0 with T > 0 and complex numbers

(bn)N
n=1. Then there exists C > 0 such that

∫ T0+T

T0

(

max
1≤ν≤N

∣

∣

∣

∣

ν
∑

n=1

bne(ant)

∣

∣

∣

∣

2)

dt ≤ C
(

T +
2π

q

)

N
∑

n=1

|an|2.

2. Koksma sequences

For background to some of the ideas used in this section we refer the reader to

[C] and [Na1]. Let (Yt)
∞
t=1 be a sequence of measurable functions defined on a

measure space Ω and then write

Sj =
∑

1≤t≤j

Yt, for j = 1, 2, . . . .

We can define

Yrs =
∑

r≤t<s

Yt (= Ss − Sr), for r < s,

and let Mn = sup1≤j≤n |Sj|. We have the following elementary lemma.

Lemma 2.1: For K ≥ 1,

∫

Ω

M2K (ω)dω ≤ (K + 1)

( K+1
∑

i=1

2i−1
∑

ν=1

∫

Ω

|Yν2(K+1)−i,(ν+1)2(K+1)−i |2(ω)dω

)

.

Proof: Suppose j < 2K+1. We can find h < K + 1 and write

(2.1) Sj =

h
∑

i=1

Ylili+1 ,

where li < li+1, with l1 = 0 and li ∈ {ν2(K+1)−i}2i−1
ν=0 , for i = 2, . . . , h − 1, and

lh = j. Applying the triangle inequality to (2.1) we can write

(2.2) |Sj | ≤
h

∑

i=1

|Ylili+1 | for j = 1, . . . , h.

Since the terms |Yli,li+1 | are positive we can apply the Cauchy–Schwartz in-

equality to bound

|Sj |2 ≤ (K + 1)
h

∑

i=1

|Yli,li+1 |2 for j = 1, . . . , h.
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Taking a supremum over j implies for all n ≤ 2K that

M2
n = ( sup

1≤i≤n
|Si|)2 = sup

1≤i≤n
|Si|2

≤ (K + 1)

( K+1
∑

i=1

2i−1
∑

ν=1

|Yν2(K+1)−i,(ν+1)2(K+1)−i |2
)

.

Integrating both sides over Ω completes the proof.

Lemma 2.2: Let {g1, . . . , gN} denote a finite K type defined on the interval X

with Koksma constant K. If we denote

d∗m,n = inf
x∈X

|g′m(x) − g′n(x)| (m 6= n),

then we have
∑

1≤j<≤k≤N

(d∗k,j)
−1 ≤ K−1 log(3N).

Proof: By hypothesis, for each pair of distinct natural numbers j, k the

function g′k(x) − g′j(x) is monotone. In particular, we can find a permutation

π(1), . . . , π(N) of the set {1, . . . , N} such that if k > j,

g′π(k)(x) ≥ g′π(j)(x),

for all x ∈ X . Thus, either

g′π(k)(x) ≥ g′π(j)(x) =

k−1
∑

i=j

(gπ(i+1))
′(x) − (gπ(i))

′(x) ≥ (k − j)K

or

dπ(k),π(j) ≥ (k − j)K.

In particular,

∑

1≤j<k≤N

(d∗k,j)
−1 =

∑

1≤j<k≤N

(d∗π(k),π(j))
−1

≤ K−1
∑

1≤j<k≤N

(k − j)−1

≤ K−1N log(3N).

Lemma 2.3: Suppose (gk(x))∞k=1 defined on the interval X = [a, b] is of K type.

For m 6= n set

d∗m,n = inf
x∈X

|g′m(x) − g′n(x)|.
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Then for h 6= 0, there exists C > 0 such that

∣

∣

∣

∣

∫ b

a

e((gm(x) − gn(x))h)dx

∣

∣

∣

∣

≤ C

hd∗m,n

.

Proof: Using the second mean value theorem there exist x0 and x′
0 in [a, b]

such that
∣

∣

∣

∣

∫ b

a

e((gm(x) − gn(x))h)dx

∣

∣

∣

∣

=

∣

∣

∣

∣

1

2πi

∫ b

a

d(e(gm(x) − gn(x))h)

g′m(x) − g′n(x)
dx

∣

∣

∣

∣

≤
∣

∣

∣

∣

1

2πh

(
∫ x0

a

d(sin(gm(x) − gn(x)h))

g′m(a) − g′n(a)
dx +

∫ b

x0

d(sin(gm(x) − gn(x)h))

g′m(b) − g′n(b)

)

dx

∣

∣

∣

∣

+

∣

∣

∣

∣

1

2πh

(
∫ x′

0

a

d(cos(gm(x) − gn(x)h))

g′m(a) − g′n(a)
dx+

∫ b

x′
0

d(cos(gm(x) − gn(x)h))

g′m(b) − g′n(b)

)

dx

∣

∣

∣

∣

.

We can bound the last line by

1

πh

( 2

|g′m(a) − g′n(a)| +
2

|g′m(b) − g′n(b)|
)

.

Let h = (h1, . . . , hl) be an l-tuple in Zl and let

Ih(N) =

∫

X

∣

∣

∣

∣

N
∑

n=1

e(〈Xn, h〉)
∣

∣

∣

∣

2

dx, for N ∈ N.

Lemma 2.4: For Ih(N) defined above we have the bound

Ih(N) << N(1 + (log N))

(

∑

i:hi 6=0

|hi|−1

)

.

Proof: We can expand

Ih(N) =

∫

X

( N
∑

n=1

e(〈Xn, h〉)
)( N

∑

n=1

e(〈Xn, h〉)
)

dx

=

∫

X

N
∑

n=1

N
∑

m=1

e(〈Xn − Xm, h〉)dx

=

N
∑

n=1

N
∑

m=1

∫

X

e(〈Xn − Xm, h〉)dx.

This means that

Ih(N) ≤ C

(

N + 2
∑

1≤m<n≤N

∣

∣

∣

∣

∫

X

e(〈Xm − Xn, h〉)dx

∣

∣

∣

∣

)

.
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By definition

∫

X

e(〈Xm − Xn, h〉)dx =
l

∏

i=1

di
∏

j=1

(
∫

Xij

e((gm(i, j, x) − gn(i, j, x))hi)dxij

)

.

Let

dm,n,i,j = inf
x∈Xij

|g′m(i, j, x) − g′n(i, j, x)|

and set

dm,n,i,j∗ =

{

1 if hj = 0,
hjdm,n,i,j if hj 6= 0.

Using Lemma 2.3 we have that

Ih(N) ≤ C

(

N +
∑

1≤m<n≤N

l
∏

i=1

di
∏

j=1

( 1

d∗m,n,i,j

)

)

.

Applying the arithmetic mean geometric mean inequality gives that

Ih(N) ≤ C

(

N +
∑

1≤m<n≤N

[

1

d

l
∑

i=1

di
∑

j=1

( 1

d∗m,n,i,j

)d
])

≤ C

(

N +

l
∑

i=1

di
∑

j=1

∑

1≤m<n≤N

( 1

d∗m,n,i,j

)

)

.

Using Lemma 2.2 this gives

Ih(N) ≤ C

(

N +
∑

i:hi 6=0

di
∑

j=1

N log(3N)

|hi|

)

≤ C

(

N +
∑

i:hi 6=0

N log(3N)

|hi|

)

,

as required.

Lemma 2.5: For (Xt)
∞
t=1 of Type 1, we have the bound

∫

X

(

max
1≤m≤2K+1

∣

∣

∣

∣

m
∑

j=1

e(〈Xj , h〉)
∣

∣

∣

∣

)2

dx ≤ C(K+1)22K+1

(

1+(K+1)
∑

i:hi 6=0

1

|hi|

)

.

Proof: We shall apply Lemma 2.1. Let Yt = e(〈Xt, h〉). Then Lemma 2.4 gives
∫

X

|Xν2K+1−i,(ν+1)2K+1−i |2dx ≤ C

(

2K+1−i +
∑

i:hi 6=0

2K+1−i log(3.2K+1−i)

|hi|

)

.

So

2i−1
∑

ν=1

∫

X

|Xν2K+1−i,(ν+1)2K+1−i |2dx ≤ C

(

2K+1 + log(3.2K+1)
∑

i:hi 6=0

1

|hi|

)

,



Vol. 157, 2007 PAIR CORRELATIONS OF SEQUENCES IN HIGHER DIMENSIONS 231

which proves Lemma 2.5.

Using (1.2)
∫

X

| max
2K−1≤m<2K

∆m|dx

≤ C1

(

2K +
∑

0<M(h)≤2K

h∈Zl 1

r(h)

∫

X

[

max
2K−1≤r<2K

∣

∣

∣

∣

∑

1≤j≤r

e(〈h, Xj〉)
∣

∣

∣

∣

2

dx + 2K

])

,

which, using Lemma 2.5, is

≤ C

(

2K +
∑

0<M(h)≤2K

1

r(h)
(K + 1)22K+1

(

K +
∑

i:hi 6=0

1

|hi|

))

.

To proceed we need the following.

Lemma 2.6: For h = (h1, . . . , hl) ∈ Zl and r(h), M(h) defined as in Lemma

1.1, then there exists C3 > 0 such that

∑

0<M(h)≤L

h∈Zl 1

r(h)

(

∑

i:hi 6=0

1

|hi|

)

≤ C3(log L)l−1 (L ∈ N).

Proof:

∑

0<M(h)≤2K

h∈Zl 1

r(h)

(

∑

i:hi 6=0

1

|hi|

)

≤ 2l
∑

0<M(h)≤2K

h∈Wl/{0}

1

r(h)

(

∑

i:hi 6=0

1

|hi|

)

,

where W k = {0, 1, 2, . . . , }k. If we denote {0, 1, . . . , d} by [d], denote

{ǫ ∈ 2[d] : #e = l} by 2
[d]
l and set

r′(h) = Πl
i=1 max{1, hi);

this is

≤ C
∑

0<M(h)≤2K

h∈Wl/{0}

1

r′(h)

(

∑

i:hi 6=0

1

|hi|

)

,

which is

C

( l
∑

b=1

∑

τ∈2
[d]
k

(

∑

i1,...,ib=1

τ∈{i1,...ib}

1

hi1 · · ·hib

))(

∑

i:hi 6=0

1

hi

)

× C

{ l
∑

b=1

l

(

l

b

)( L
∑

j=1

j−1

)b−1( L
∑

j=1

j−2

)}

<< (log L)l−1,
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as required. Lemma 2.6 is proved.

Lemma 2.6 immediately gives

∫

X

(

max
2K−1≤m≤2K

∣

∣

∣

∣

l
∑

j=1

e(< Xj, h >)

∣

∣

∣

∣

)2

dx

≤ C(2K + (K + 1)22K+1K l + 2K(K + 1)3K l−1)

<< 2KK l+2.

The proof of Theorem 1 now follows by an argument analogous to that used to

prove Lemma 1.4.

3. Oscilatory sequences

Again we need a series of Lemmas. The first is a quasi-orthogonality lemma

due to LeVeque [L].

Lemma 3.1: For integers h(6= 0), j and k (j 6= k) and a given interval [u, v]

∣

∣

∣

∣

∫ v

u

e(h(aj cos ajx − ak cos(akx))dx

∣

∣

∣

∣

≤ K

|ak − aj |1/2
.

We have the following essential two norm estimate.

Lemma 3.2: For integer h 6= 0 we have

Jh(M, N) =

∫

X

∣

∣

∣

∣

M+N
∑

n=M+1

e(< Xn, h >)

∣

∣

∣

∣

2

dx ≤ CN3/2.

Proof: Straightforwardly we have

|Jh(M, N)| ≤ C

(

N +
∑

M+1≤m<n≤M+N

∣

∣

∣

∣

∫

X

e(< Xm − Xn, h >)dx

∣

∣

∣

∣

)

.

Also
∣

∣

∣

∣

∫

X

e(< Xm − Xn, h >)dx

∣

∣

∣

∣

≤ Πl
i=1Π

dk
j=1

∣

∣

∣

∣

∫

X(i,j)

e(am(i, j) cos(am(i, j)xi,j)−e(an(i, j) cos(an(i, j)xi,j)dxi,j

∣

∣

∣

∣

.

Let z∗m,n,i,j = 1 if hj = 0 and z∗m,n,i,j = hjzm,n,i,j if hj 6= 0, where

zm,n,i,j = |am(i, j) − an(i, j)|1/2 ≥ |m − n|1/2.
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Thus

|Jh(M, N)| ≤ C

(

N +
∑

M+1≤m<n≤N

Πl
i=1Π

dk

j=1

( 1

z∗m,n,i,j

)

)

.

Using the arithmetic mean geometric mean inequality this is

|Jh(M, N)| ≤ C

(

N +
∑

M+1≤m<n≤N

l
∑

i=1

dk
∑

j=1

( 1

z∗m,n,i,j

)

)

,

which is

≤ C

(

N +
∑

M+1≤m<n≤M+N

(n − m)−1/2

)

≤ CN3/2,

as required.

We also have the following lemma.

Lemma 3.3: We have

∫

X

(

max
1≤m≤2K+1

∣

∣

∣

∣

l
∑

j=1

e(< Xj , h >)

∣

∣

∣

∣

2)

dx ≤ Ck23K/2.

Proof: Using Lemma 3.2 we see that

∫

X

|Yν2K+1−i,(ν+1)2K+1−i |2dx ≤ C(2K+1−i)3/2.

This means that

2i−1
∑

i=1

∫

X

|Yν2K+1−i,(ν+1)2K+1−i |2dx ≤ C23(K+1)/22−i/2

and hence that

(K + 1)

K+1
∑

i=1

2i−1
∑

i=1

∫

X

|Yν2K+1−i,(ν+1)2K+1−i |2dx ≤ C(K + 1)23(k+1)/2.

Invoking Lemma 2.1 completes the proof of Lemma 3.3.

We can now complete the proof of Theorem 4. Recall that

∫

X

| max
2K−1≤m<2K

∆m|2dx
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≤ C

(

2K +
∑

0≤M(h)≤2K

1

r(h)

∫

X

(

max
1≤m≤2K+1

∣

∣

∣

∣

m
∑

j=1

e(< Xj , h >)

∣

∣

∣

∣

2)

dx

)

≤ C

(

2K +
∑

0≤M(h)≤2K

1/r(h)K23K/2

)

≤ C

(

23K/2K

(

∑

0≤M(h)≤2K

1

r(h)

))

,

which, using Lemma 1.3, is

≤ C23K/2K l+1.

The theorem now follows using this estimate and the argument used to complete

the proof of Theorem 1.

4. Sharpness of Theorems 1, 2 and 3

The following is the standard Denjoy–Koksma Theorem (for d = 1).

Lemma 4.1: Let f : T→ R be a continuous function of bounded variation. For

any points (xi)
N
i=1 ⊂ T we can bound

∣

∣

∣

∣

1

N

N
∑

j=1

f(xj) −
∫ 1

0

f(t)dt

∣

∣

∣

∣

≤ 6V (f)D(x1, . . . , xN ),

where V (f) = sup(xi)N
i=1

{∑N
i=1 |f(xi)−f(xi−1)| : 0 = x0 < x1 < · · · < xN = 1}.

Taking f(x) = e(x), Lemma 4.1 gives that

∣

∣

∣

∣

∑

1≤i6=j≤N

e(Xi(x) − Xj(x))

∣

∣

∣

∣

≤ C
∆N

N

and with the choices Xj(x) = ajx we get that

∣

∣

∣

∣

N
∑

j=1

e(ajx)

∣

∣

∣

∣

2

− N ≤ C
∆N

N

and by the triangle inequality

∣

∣

∣

∣

N
∑

j=1

cos(2πajx)

∣

∣

∣

∣

≤
∣

∣

∣

∣

N
∑

j=1

e(ajx)

∣

∣

∣

∣

.
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Let f(k) =
√

log k; then we observe that

sup
k≥1

f(k2)

f(k)
< ∞ and

∞
∑

k=1

1

k[f(k)]2
= ∞.

There exists a strictly increasing sequence of integers (ak) such that

lim sup
N→+∞

|∑N
j=0 cos(2πajx)|
√

Nf(N)
> 0.

As shown in [BP] this can be done with a sequence satisfying

ak+1

ak
≥ 1 +

1√
k(log k)β

,

for some β > 0. In particular, we see that

lim sup
N→∞

∆N

N log N
> 0 a.e.

In particular, Theorems 1, 2 and 3 cannot be improved much in general.

5. A generalization

It is possible to extend these results from rectangles to certain types of more

complicated sets. Assume that (Rt)
∞
t=1 is a collection of disjoint k-dimensional

rectangles in Tk. Let us write

Rt = Jt,1 × · · · × Jt,k,

where each Jti is a half open interval, open on the left and closed on the right.

We further assume that leb(Rt) = O(a−t), for some a > 1. Consider the set

B =
⋃∞

t=1 Rt.

Theorem 5.1: Given ǫ > 0, there exists N0 = N0(ǫ, d, B, ǫ) such that for

N > N0,
∣

∣

∣

∣

2

N(N − 1)

∑

1≤i6=j≤N

χB(Xi − Xj) − leb(B)

∣

∣

∣

∣

= O
( (log N)2+d+ǫ

N

)

, a.e.

Proof: For each N ∈ N, we can write B = t(N) ∪ s(N), where t(M) =
⋃

1≤t≤z(N) Rt and t(M) =
⋃

t≥z(N) Rt, where z(N) = loga N .

Let

K(B, l, x) =
∑

1≤i6=j≤l

χB(Xi − Xj) −
l(l − 1)

2
leb(B).
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If ||f ||2 = (
∫

X
|f |2dx)1/2| we see that

(5.1) || max
1≤l≤N

|K(t(N), l, x)| ||2 ≤ z(N)|| max
1≤l≤N

∆l||2

since

K(t(N), l, x) =
∑

1≤i6=j≤z(N)

χB(Xi − Xj) −
l(l − 1)

2
leb(B).

Following the lines of the argument of the previous section we note that

|| max
1≤l≤N

∆l||2 ≤ CN(log N)d.

We also have the bound

|| max
1≤l≤N

|K(s(N), l, x)|||2

=

∥

∥

∥

∥

max
1≤l≤N

∣

∣

∣

∣

l(l − 1)

2

∑

1≤i6=j≤l

χs(N)(Xi − Xj) − leb(s(N))

∥

∥

∥

∥

2

≤
∥

∥

∥

∥

max
1≤l≤N

∣

∣

∣

∣

l(l − 1)

2

∑

1≤i6=j≤l

χs(N)(Xi − Xj)

∥

∥

∥

∥

2

+ leb(s(N))

≤
∑

1≤i6=j≤l

||χs(N)(Xi − Xj)||2 +
N(N − 1)

2
leb(s(N)).

Lemma 5.2: Let Rr,s,t := {x : Xr − Xs ∈ Rt}. Then leb(Rt) if r 6= s and

aijr 6= aijs for all i, j.

Proof: It is a simple exercise, repeatedly using the fact that for each integer

a 6= 0 the map x 7→ {ax}, and for any real y the map x 7→ {x+y}, both preserve

Lebesgue measure on the unit interval, that |Rr,s,t| = |Rt| for each pair r, s with

r 6= s. This means that

||χs(N)(Xi − Xj)||2 =
∑

1≤i6=j≤N

(

∑

t>z(N)

|Ri,j,t|
)1/2

+
N(N − 1)

2
leb(N)

≤
∑

1≤i6=j≤N

(

∑

t>z(N)

|Rt|
)1/2

+
N(N − 1)

2
leb(N).

Thus

(5.2) || max
1≤l≤N

K(s(N), l, x)||2 ≤ N(N − 1)

2
|s(N)|1/2.
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Furthermore,

(5.3) |s(N)| =
∑

t>z(N)

leb(Rk) <<
∑

t>z(N)

a−k << a−z(N).

The above inequalities (5.1), (5.2) and (5.3) are sufficient to prove the

theorem.

6. Discrepancy results

Using Lemma 1.1 directly instead of (1.1) the same methods lead to discrepancy

results. Let us denote, for each N ≥ 1,

D(N, x) = D(X1(x), . . . , XN(x)).

Theorem 6.1: Suppose (XN )∞N=1 is defined Type 1. Given ǫ > 0, we have the

bound

D(N, x) = O(N−1/2(log N)3/2+d+ǫ), a.e.

Theorem 6.2: Suppose (XN )∞N=1 is Type 1. Given B and ǫ > 0, then there

exists N1 = N1(ǫ, d, B, x) such that for N > N1 we have

∣

∣

∣

∣

1

N

N
∑

j=1

χB(Xj(x)) − leb(B)

∣

∣

∣

∣

= O(N−1/2(log N)5/2+d+ǫ), a.e.

Theorem 6.3: Suppose (XN )∞N=1 is Type 2. Given ǫ > 0, we have the bound

D(N, x) = O(N−1/2(log N)1/2+d+ǫ), a.e.

Theorem 6.4: Suppose (XN )∞N=1 is Type 2. Given B and ǫ > 0, then there

exists N1 = N1(ǫ, d, B, x) such that for N > N1 we have

∣

∣

∣

∣

1

N

N
∑

j=1

χB(Xj(x)) − leb(B)

∣

∣

∣

∣

= O(N−1/2(log N)3/2+d+ǫ), a.e.

Theorem 6.5: Suppose (XN )∞N=1 is Type 4. Given ǫ > 0, we have the bound

D(N, x) = O(N−1/4(log N)3/2+d+ǫ), a.e.
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